Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Emerg Microbes Infect ; 11(1): 2120-2131, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1967813

ABSTRACT

Spike (S) glycoprotein is the most significant structural protein of SARS-CoV-2 and a key target for neutralizing antibodies. In light of the on-going SARS-CoV-2 pandemic, identification and screening of epitopes of spike glycoproteins will provide vital progress in the development of sensitive and specific diagnostic tools. In the present study, NTD, RBD, and S2 genes were inserted into the pcDNA3.1(+) vector and designed with N-terminal 6× His-tag for fusion expression in HEK293F cells by transient transfection. Six monoclonal antibodies (4G, 9E, 4B, 7D, 8F, and 3D) were prepared using the expressed proteins by cell fusion technique. The characterization of mAbs was performed by indirect -ELISA, western blot, and IFA. We designed 49 overlapping synthesized peptides that cover the extracellular region of S protein in which 6 amino acid residues were offset between adjacent (S1-S49). Peptides S12, S19, and S49 were identified as the immunodominant epitope regions by the mAbs. These regions were further truncated and the peptides S12.2 286TDAVDCALDPLS297, S19.2 464FERDISTEIYQA475, and S49.4 1202ELGKYEQYIKWP1213 were identified as B- cell linear epitopes for the first time. Alanine scans showed that the D467, I468, E471, Q474, and A475 of the epitope S19.2 and K1205, Q1208, and Y1209 of the epitope S49.4 were the core sites involved in the mAbs binding. The multiple sequence alignment analysis showed that these three epitopes were highly conserved among the variants of concern (VOCs) and variants of interest (VOIs). Taken together, the findings provide a potential material for rapid diagnosis methods of COVID-19.


Subject(s)
Epitopes, B-Lymphocyte , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Amino Acid Sequence , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Epitopes, B-Lymphocyte/genetics , Humans , Membrane Glycoproteins/genetics , Peptides , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
2.
Appl Microbiol Biotechnol ; 106(3): 1151-1164, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1626255

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes the coronavirus disease (COVID-19). It is confirmed that nucleocapsid (N) protein is closely related to viral pathogenesis, modulation of host immune response, RNA transcription, and replication and virus packaging. Therefore, the N protein is a preponderant antigen target for virus detection. The codon-optimized N gene was designed according to the encoding characteristics of insect cells and inserted into pFastBacTM1 vector with 6 × His-tag-fused N protein for expression in insect sf21 cells. Six anti-N mAbs (4G3, 5B3, 12B6, 18C7-A2, 21H10-A3, 21H10-E9) were prepared by recombinant N protein. The mAbs showed high titers, antibody affinity, and reactivity with the SARS-CoV-2 N protein. Then, fourteen overlapped peptides that covered the intact N protein were synthesized (N1-N14). Peptide N14 was identified as the main linear B-cell epitope region via peptide-ELISA and dot-blot assay, and this region was truncated gradually until mapping the peptide 401-DFSKQLQQ-408. Simultaneously, compared with the sequence of variants of concern (VOCs) and variants of interest (VOIs) strains among the several countries, epitope 401-DFSKQLQQ-408 is very conservative among them. The findings provide new guidance for the design and detection of COVID-19 targets. KEY POINTS: • The N protein was optimized according to the insect cell codon preference and was highly expressed. • The monoclonal antibodies prepared in this study were shown high antibody titers and high affinity. • Monoclonal antibodies were used to map the epitope 401-408 amino acids of N protein for the first time in this study.


Subject(s)
COVID-19 , Nucleocapsid Proteins , Antibodies, Monoclonal , Antibodies, Viral , Epitope Mapping , Epitopes, B-Lymphocyte , Humans , Nucleocapsid Proteins/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
Front Immunol ; 12: 707977, 2021.
Article in English | MEDLINE | ID: covidwho-1457901

ABSTRACT

The ongoing COVID-19 pandemic caused by SARS-CoV-2 is a huge public health crisis for the globe. The receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein plays a vital role in viral infection and serves as a major target for developing neutralizing antibodies. In this study, the antibody response to the RBD of SARS-CoV-2 S protein was analyzed by a panel of sera from animals immunized with RBD-based antigens and four linear B-cell epitope peptides (R345, R405, R450 and R465) were revealed. The immunogenicity of three immunodominant peptides (R345, R405, R465) was further accessed by peptide immunization in mice, and all of them could induced potent antibody response to SARS-CoV-2 S protein, indicating that the three determinants in the RBD were immunogenic. We further generated and characterized monoclonal antibodies (15G9, 12C10 and 10D2) binding to these epitope peptides, and finely mapped the three immunodominant epitopes using the corresponding antibodies. Neutralization assays showed that all three monoclonal antibodies had neutralization activity. Results from IFA and western blotting showed that 12C10 was a cross-reactive antibody against both of SARS-CoV-2 and SARS-CoV. Results from conservative and structural analysis showed that 350VYAWN354 was a highly conserved epitope and exposed on the surface of SARS-CoV-2 S trimer, whereas 473YQAGSTP479 located in the receptor binding motif (RBM) was variable among different SARS-CoV-2 strains. 407VRQIAP412 was a highly conserved, but cryptic epitope shared between SARS-CoV-2 and SARS-CoV. These findings provide important information for understanding the humoral antibody response to the RBD of SARS-CoV-2 S protein and may facilitate further efforts to design SARS-CoV-2 vaccines and the target of COVID-19 diagnostic.


Subject(s)
B-Lymphocytes/immunology , Epitopes, B-Lymphocyte/metabolism , Peptides/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Motifs/genetics , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19 Vaccines , Conserved Sequence/genetics , Epitope Mapping , Epitopes, B-Lymphocyte/genetics , HEK293 Cells , Humans , Immunity, Humoral , Peptides/genetics , Protein Binding , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL